How to effectively explore the colors of reference exemplars and propagate them to colorize each frame is vital for exemplar-based video colorization. In this paper, we present an effective BiSTNet to explore colors of reference exemplars and utilize them to help video colorization by a bidirectional temporal feature fusion with the guidance of semantic image prior. We first establish the semantic correspondence between each frame and the reference exemplars in deep feature space to explore color information from reference exemplars. Then, to better propagate the colors of reference exemplars into each frame and avoid the inaccurate matches colors from exemplars we develop a simple yet effective bidirectional temporal feature fusion module to better colorize each frame. We note that there usually exist color-bleeding artifacts around the boundaries of the important objects in videos. To overcome this problem, we further develop a mixed expert block to extract semantic information for modeling the object boundaries of frames so that the semantic image prior can better guide the colorization process for better performance. In addition, we develop a multi-scale recurrent block to progressively colorize frames in a coarse-to-fine manner. Extensive experimental results demonstrate that the proposed BiSTNet performs favorably against state-of-the-art methods on the benchmark datasets. Our code will be made available at \url{https://yyang181.github.io/BiSTNet/}
translated by 谷歌翻译
We study the hidden-action principal-agent problem in an online setting. In each round, the principal posts a contract that specifies the payment to the agent based on each outcome. The agent then makes a strategic choice of action that maximizes her own utility, but the action is not directly observable by the principal. The principal observes the outcome and receives utility from the agent's choice of action. Based on past observations, the principal dynamically adjusts the contracts with the goal of maximizing her utility. We introduce an online learning algorithm and provide an upper bound on its Stackelberg regret. We show that when the contract space is $[0,1]^m$, the Stackelberg regret is upper bounded by $\widetilde O(\sqrt{m} \cdot T^{1-C/m})$, and lower bounded by $\Omega(T^{1-1/(m+2)})$. This result shows that exponential-in-$m$ samples are both sufficient and necessary to learn a near-optimal contract, resolving an open problem on the hardness of online contract design. When contracts are restricted to some subset $\mathcal{F} \subset [0,1]^m$, we define an intrinsic dimension of $\mathcal{F}$ that depends on the covering number of the spherical code in the space and bound the regret in terms of this intrinsic dimension. When $\mathcal{F}$ is the family of linear contracts, the Stackelberg regret grows exactly as $\Theta(T^{2/3})$. The contract design problem is challenging because the utility function is discontinuous. Bounding the discretization error in this setting has been an open problem. In this paper, we identify a limited set of directions in which the utility function is continuous, allowing us to design a new discretization method and bound its error. This approach enables the first upper bound with no restrictions on the contract and action space.
translated by 谷歌翻译
Recently, the dominant DETR-based approaches apply central-concept spatial prior to accelerate Transformer detector convergency. These methods gradually refine the reference points to the center of target objects and imbue object queries with the updated central reference information for spatially conditional attention. However, centralizing reference points may severely deteriorate queries' saliency and confuse detectors due to the indiscriminative spatial prior. To bridge the gap between the reference points of salient queries and Transformer detectors, we propose SAlient Point-based DETR (SAP-DETR) by treating object detection as a transformation from salient points to instance objects. In SAP-DETR, we explicitly initialize a query-specific reference point for each object query, gradually aggregate them into an instance object, and then predict the distance from each side of the bounding box to these points. By rapidly attending to query-specific reference region and other conditional extreme regions from the image features, SAP-DETR can effectively bridge the gap between the salient point and the query-based Transformer detector with a significant convergency speed. Our extensive experiments have demonstrated that SAP-DETR achieves 1.4 times convergency speed with competitive performance. Under the standard training scheme, SAP-DETR stably promotes the SOTA approaches by 1.0 AP. Based on ResNet-DC-101, SAP-DETR achieves 46.9 AP.
translated by 谷歌翻译
Single-cell technologies are revolutionizing the entire field of biology. The large volumes of data generated by single-cell technologies are high-dimensional, sparse, heterogeneous, and have complicated dependency structures, making analyses using conventional machine learning approaches challenging and impractical. In tackling these challenges, deep learning often demonstrates superior performance compared to traditional machine learning methods. In this work, we give a comprehensive survey on deep learning in single-cell analysis. We first introduce background on single-cell technologies and their development, as well as fundamental concepts of deep learning including the most popular deep architectures. We present an overview of the single-cell analytic pipeline pursued in research applications while noting divergences due to data sources or specific applications. We then review seven popular tasks spanning through different stages of the single-cell analysis pipeline, including multimodal integration, imputation, clustering, spatial domain identification, cell-type deconvolution, cell segmentation, and cell-type annotation. Under each task, we describe the most recent developments in classical and deep learning methods and discuss their advantages and disadvantages. Deep learning tools and benchmark datasets are also summarized for each task. Finally, we discuss the future directions and the most recent challenges. This survey will serve as a reference for biologists and computer scientists, encouraging collaborations.
translated by 谷歌翻译
我们在本文中解决了广义类别发现(GCD)的问题,即从一组可见的类中利用信息的未标记的图像,其中未标记的图像可以包含可见的类和看不见的类。可以将所见类看作是类的隐式标准,这使得此设置不同于无监督的聚类,而集群标准可能模棱两可。我们主要关注在细粒数据集中发现类别的问题,因为它是类别发现的最直接应用程序之一,即帮助专家使用所见类规定的隐性标准在未标记的数据集中发现新颖概念。通用类别发现的最新方法杠杆对比度学习以学习表示形式,但是较大的类间相似性和阶层内差异对方法提出了挑战,因为负面示例可能包含无关的线索,以识别类别因此,算法可能会收敛到局部微米。我们提出了一种名为“专家对抗性学习(XCON)”的新颖方法,可以通过将数据集使用K-均值聚类将数据集划分为子数据库,然后对每个子数据集进行对比度学习,从而帮助模型从图像中挖掘有用的信息。学习细粒度的判别特征。在细粒度数据集上的实验表明,与以前的最佳方法相比,性能明显改善,表明我们方法的有效性。
translated by 谷歌翻译
跟踪位置和方向独立提供了更敏捷的动作,以实现过度射击的多旋翼无人机(UAV),同时引入了不希望的倒入效果;推力发电机产生的倾斜流可能会因接近性而抵消其他流动,从而极大地威胁了平台的稳定性。建模空气动力气流的复杂性挑战了适当补偿这种副作用的算法。利用无人机分配的输入冗余,我们通过新的控制分配框架来解决此问题,该框架考虑了倾斜效果,并探索了整个分配空间以获得最佳解决方案。该最佳解决方案避免了倾斜效果,同时在硬件约束中提供了高推力效率。据我们所知,我们的是第一个调查对过度驱动无人机的倾斜影响的正式推导。我们在模拟和实验中验证了不同硬件配置的框架。
translated by 谷歌翻译
变压器是一种基于关注的编码器解码器架构,彻底改变了自然语言处理领域。灵感来自这一重大成就,最近在将变形式架构调整到计算机视觉(CV)领域的一些开创性作品,这已经证明了他们对各种简历任务的有效性。依靠竞争力的建模能力,与现代卷积神经网络相比在本文中,我们已经为三百不同的视觉变压器进行了全面的审查,用于三个基本的CV任务(分类,检测和分割),提出了根据其动机,结构和使用情况组织这些方法的分类。 。由于培训设置和面向任务的差异,我们还在不同的配置上进行了评估了这些方法,以便于易于和直观的比较而不是各种基准。此外,我们已经揭示了一系列必不可少的,但可能使变压器能够从众多架构中脱颖而出,例如松弛的高级语义嵌入,以弥合视觉和顺序变压器之间的差距。最后,提出了三个未来的未来研究方向进行进一步投资。
translated by 谷歌翻译
心脏结构的准确分割可以帮助医生诊断疾病并改善治疗计划,这在临床实践中是高度要求的。但是,不同供应商和医疗中心之间的注释短缺以及数据的差异限制了先进的深度学习方法的性能。在这项工作中,我们提出了一种全自动方法,用于分割包括左(LV)和右心室(RV)血池在内的心脏结构,以及MRI体积中的左心室心肌(Myo)。具体而言,我们设计了一种半监督的学习方法,以通过标签传播来利用未标记的MRI序列时间范围。然后,我们利用样式转移,以减少不同中心和供应商之间的方差,以进行更健壮的心脏图像分割。我们在M&M挑战7中评估我们的方法,在14个竞争团队中排名第二。
translated by 谷歌翻译
Variational autoencoders model high-dimensional data by positing low-dimensional latent variables that are mapped through a flexible distribution parametrized by a neural network. Unfortunately, variational autoencoders often suffer from posterior collapse: the posterior of the latent variables is equal to its prior, rendering the variational autoencoder useless as a means to produce meaningful representations. Existing approaches to posterior collapse often attribute it to the use of neural networks or optimization issues due to variational approximation. In this paper, we consider posterior collapse as a problem of latent variable non-identifiability. We prove that the posterior collapses if and only if the latent variables are non-identifiable in the generative model. This fact implies that posterior collapse is not a phenomenon specific to the use of flexible distributions or approximate inference. Rather, it can occur in classical probabilistic models even with exact inference, which we also demonstrate. Based on these results, we propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility. This model class resolves the problem of latent variable non-identifiability by leveraging bijective Brenier maps and parameterizing them with input convex neural networks, without special variational inference objectives or optimization tricks. Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
translated by 谷歌翻译
This paper illustrates the technologies of user next intent prediction with a concept knowledge graph. The system has been deployed on the Web at Alipay, serving more than 100 million daily active users. Specifically, we propose AlipayKG to explicitly characterize user intent, which is an offline concept knowledge graph in the Life-Service domain modeling the historical behaviors of users, the rich content interacted by users and the relations between them. We further introduce a Transformer-based model which integrates expert rules from the knowledge graph to infer the online user's next intent. Experimental results demonstrate that the proposed system can effectively enhance the performance of the downstream tasks while retaining explainability.
translated by 谷歌翻译